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We investigate the relationship between the local and global bending motions of #uid-
conveying pipes on an elastic foundation. The local approach refers to an in"nite pipe without
taking into account its "nite ends, while in the global approach we consider a pipe of "nite
length with a given set of boundary conditions. Several kinds of propagating disturbances are
identi"ed from the dispersion relation, namely evanescent, neutral and unstable waves. As the
length of the pipe is increased, the global criterion for instability is found to coincide with local
neutrality, whereby a local harmonic forcing only generates neutral waves. For sets of boundary
conditions that give rise only to static instabilities, the criterion for global instability of the long
pipe is that static neutral waves exist. Conversely, for sets of boundary conditions that allow
dynamic instabilities, the criterion for global instability of the long pipe corresponds to that for
the existence of neutral waves of "nite nonzero frequency. These results are discussed in relation
with the work of Kulikovskii and other similar approaches in hydrodynamic stability theory.
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1. INTRODUCTION

IN THIS PAPER, the in#uence of the local properties of bending waves on the global linear
stability of a long #uid-conveying pipe with various boundary conditions is analysed.
A schematic view of a cantilevered pipe on an elastic foundation is given in Figure 1. In the
literature, considerable attention has been given to the lateral vibrations of pipes containing
or surrounded by a moving #uid. Many studies [see PamKdoussis (1998)] have sought to
establish the instability conditions for #uid-conveying pipes of "nite length in various
geometrical and physical con"gurations. It has been demonstrated that these pipes can be
destabilized by #utter or buckling, depending on the boundary conditions at the ends, as the
#uid velocity is increased. Such instabilities will be referred to as global.

It has also been shown (Roth 1964; Stein & Tobriner 1970) that an in"nite pipe modelled
with the same local equations can experience instability. In that case the instabilities are
referred to as local, since only the local equations are considered, independently of end
conditions. Recently, the concepts of absolute and convective instability have been applied
to this particular problem (Kulikovskii & Shikina 1988; Triantafyllou 1992; de Langre
& Ouvrard 1999). These concepts, "rst introduced in plasma physics (Briggs 1964; Bers
1983) and fruitfully applied to hydrodynamics (Huerre & Rossi 1998) pertain to the
long-time impulse response of a spatially homogeneous system of in"nite extent.

The objective of the present paper is to determine the respective roles of wave propaga-
tion and wave re#ections at the pipe ends on the global instability as the length takes large
values, and thus to establish a link between local and global analyses. Such an approach has
already been applied to the case of the Ginzburg}Landau equation, a simple substitute for
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Figure 1. The cantilevered #uid-conveying pipe on elastic foundation.
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the Navier}Stokes equations, and the key role of absolute instability has been brought out
(Chomaz & Couairon 1999). In the case of #uid-conveying pipes (Benjamin 1960;
PamKdoussis 1970), the energy exchange rate between the #uid and the structure over one
period of oscillation has been expressed in terms of the motion of the pipe ends. Lucey
(1998) and Wiplier & Ehrenstein (2000) explored numerically the e!ect of "nite length on
the instability of a #exible panel under #ow. In Lee & Mote (1997), wave re#ections at the
boundaries were also shown to result in an energy gain that could lead to global instability.
More recently, Inada & Hayama (2000) analysed the role of travelling waves in #utter
instability caused by leakage #ow. In a more general case, it has been shown by Kulikovskii
(1966) that, as the length of a system is increased, the criterion for global stability tends
asymptotically to a form that is independent of the boundary conditions.

The linearized equation of motion governing the lateral in-plane de#ection > (X,¹) of
a #uid-conveying pipe is (Bourrières 1939; PamKdoussis 1998)
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where EI is the #exural rigidity of the pipe, oA the #uid mass per unit length, ; the plug
#ow velocity, S the elastic foundation modulus and F (X,¹) is the external force per unit
length. We only consider here the onset of instabilities, and nonlinear e!ects are therefore
neglected in the dynamics of the pipe. If one considers a pipe of length ¸, appropriate
nondimensional variables are, following Gregory & PamKdoussis (1966),

x"X/¸, y">/¸, t"(EI/(oA#m))1@2¹/¸2,

u";¸ (oA/EI)1@2, b"oA/(oA#m), s"S¸4/EI, f"F¸3/EI. (2)

Equation (1) then reads
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In the following sections, we consider various boundary conditions at the pipe ends,
x"0 and x"1: y"Ly/Lx"0 (clamped end), y"L2y/Lx2"0 (pinned end) or L2y/Lx2"

L3y/Lx3"0 (free end).
In Section 2, we give the global conditions of stability for various boundary conditions.

The stability conditions of the in"nite pipe and the properties of propagating waves are
analysed in Section 3. In Section 4, a comparison between the local and global approaches is
made regarding the predicted behaviour of the pipe as its length is increased. The results are
discussed in Section 5.



Figure 2. Global stability curves of the clamped}free pipe in the (b, u) plane for di!erent values of the elastic
foundation sti!ness s.
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2. GLOBAL STABILITY

Let us "rst analyse the linear stability of a #uid-conveying pipe of "nite length on an elastic
foundation. Three di!erent sets of boundary conditions are considered at the upstream and
downstream ends: clamped}free (cantilevered pipe), pinned}pinned and clamped}clamped.
Free motion of the pipe is assumed, so that f (x, t)"0 in equation (3).

Following Lottati & Kornecki (1986), the dynamics of the cantilevered (clamped}free)
pipe is analysed by calculating its eigenfrequencies u

j
, j"1,2, N, via a standard Galerkin

method (Gregory & PamKdoussis 1966), y (x, t)"+N
j/1

/
j
(x)e~*uj t, /

j
(x) being the jth eigen-

mode of the pipe without #ow and elastic foundation (u"0, s"0). These frequencies will
be referred to as global. The real part of u is the dimensionless oscillation frequency, while
its imaginary part is the temporal growth rate. For u"0, the system described by equation
(3) is a neutrally stable beam with real eigenfrequencies. By increasing u, some eigenfrequen-
cies become complex and a positive imaginary part for one of them induces a #utter-type
instability. The critical nondimensional velocity u

c
for the onset of instability is plotted in

Figure 2 as a function of b for several values of the elastic foundation sti!ness s. Up to 100
modes have been used at the highest values of u and s. The value of u

c
clearly depends on b,

and the elastic foundation modulus s has a stabilizing e!ect, as noted in Lottati & Kornecki
(1986).

The stability conditions of the pinned}pinned and clamped}clamped pipes on an elastic
foundation have been obtained by Roth (1964) and can be derived from that of a column
under compressive load (Timoshenko & Gere 1961). The critical velocity for the pinned}
pinned pipe is given by

u
c
"Nn A1#

s
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, (4)

where N is the smallest integer satisfying N2(N#1)25s/n4. The critical velocity at s"0 is
readily found as u

c
"n. Similarly, the clamped}clamped pipe undergoes an instability at

a critical velocity
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Figure 3. Global stability curves of the pinned}pinned pipe and the clamped}clamped pipe; - - -, clamped}
clamped pipe; - ' -, pinned}pinned pipe.
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otherwise, where N is the smallest integer satisfying N4#2N3#3N2#2N#65s/n4.
The pinned}pinned and clamped}clamped pipes are unstable due to buckling and the
critical velocity does not depend on b. The critical velocities for static instability of the
pinned}pinned and clamped}clamped pipes are plotted as functions of the foundation
sti!ness s in Figure 3.

3. LOCAL STABILITY

Consider now an in"nite pipe modelled with the same local equation (1) and introduce
dimensionless variables that do not refer to the pipe length ¸ but to the local scale
g"(EI/S)1@4, associated with the ratio between bending sti!ness and foundation modulus.
The length g may be interpreted as the wavelength that appears in the static response of the
pipe without #ow

y (x)"e~x@g sinA2n
x

gB (7)

under transverse unit point loading. Appropriate nondimensional variables are now

x"X/g, y">/g, t"(S/(oA#m))1@2¹,

v";(oA)1@2/(SEI)1@4, b"oA/(oA#m), f"F/(S3EI)1@4. (8)

These will be used throughout the remainder of the present paper. Equation (1) now reads
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If the pipe displacement is sought in the form

y (x, t)"y
0
e*(kx~ut), (10)

the linear dispersion relation is readily obtained as

D(k, u, v,b) y (u, k)"[k4!v2k2#2Jbvku!u2#1] y(u, k)"/ (u, k), (11)

where / (u, k) is the Fourier transform in x and t of the forcing function f (x, t). Local
properties of bending waves propagating along the pipe are now analysed in terms of the
wavenumber k and frequency u through the examination of this dispersion relation.
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The system is stable if, for any sinusoidal wave of in"nite extent in the x-direction and
associated to a real wavenumber k, the corresponding frequencies given by equation (11) are
such that the displacement remains "nite in time. Stability is therefore ensured if for any real
wave number k, Im[u(k)]40. This approach is said to be temporal, since it examines the
evolution of waves in time. According to Roth (1964) and Stein & Tobriner (1970), the pipe
is locally unstable when

v'v
i
"S

2

1!b
. (12)

Conversely, the spatial approach refers to the development in space of waves generated by
a localized time-harmonic forcing. It is more appropriate for the analysis of the global
instability of "nite-length systems, since no assumption of in"nite extent is made on the
perturbation.

Let us "rst consider the impulse response G(x, t) of the system to an impulsive loading,

f (x, t)"d (x)d(t). (13)

If v(v
i
, the system is stable and the impulse response is an evanescent wavepacket. In the

case of instability, we may di!erentiate between two cases. The absolute or convective
nature of the instability is characterized by the long-time impulse response G(0, t) at
the impulse point (Bers 1983). If lim

t?=
G(0, t)"0, the instability is said to be convective.

The ampli"ed wavepacket created by the impulse forcing is convected downstream of the
point of excitation. If lim

t?=
G (0,R)"R the instability is said to be absolute. The

wavepacket grows near x"0 and is dominated by the absolute frequency u
0

such that

Im(u
0
)'0, and D(k,u

0
)"

LD(k, u)

Lk Ku0

"0. (14)

This saddle point (u
0
, k

0
) of the dispersion relation must also be associated with a pinching

in the complex k plane between two branches that correspond to waves found on either side
of the impulse perturbation. This gives a criterion of transition between convective and
absolute instability (Bers 1983).

Let us also analyse the properties of waves generated by forcing at a real frequency u
f
.

This is done by considering the harmonic forcing

f (x, t)"d(x)H (t) e*uft, (15)

where H(t) is the Heaviside unit step function. In the case of absolute instability the
transient associated with the switching on of the harmonic forcing at t"0, modelled by
H(t), contains all the frequencies, including the absolute frequency u

0
and the system

evolution will be dominated by the absolute instability. In the case of convective instability,
the switch on transient is advected downstream, and such a forcing generates four waves
corresponding to four wavenumber roots of the dispersion relation at u"u

f
. Two

wavenumbers correspond to waves that propagate downstream of the excitation point and
will be referred to as k

d1
and k

d2
. The two other wavenumbers correspond to waves that

propagate upstream of the excitation point and will be referred to as k
u1

and k
u2

.
In the convectively unstable regime, the direction of each of the waves emerging from the

point of excitation may be found by calculating the four roots k (u) at a complex frequency
u with Im(u) larger than the maximum growth rate q

.!9
(Bers 1983) de"ned by

q
.!9

"max
k real

Im[u(k)]. (16)
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Complex wavenumbers with a positive imaginary part de"ne waves propagating down-
stream of the point of excitation, while wavenumbers with a negative imaginary part de"ne
waves propagating upstream. By reducing Im (u) to zero and following the evolution of
k-branches, we may identify upstream- and downstream-going waves for a real value of u.
A downstream wavenumber with a positive imaginary part corresponds to a spatially
evanescent wave and with a negative imaginary part to a spatially ampli"ed wave.
A wavenumber that is real refers to a spatially neutral wave. If the system is locally stable,
the maximum growth rate as de"ned in equation (16) equals zero and the direction of
propagation for a real forcing frequency may be found directly by considering the imagi-
nary part of k or the group velocity if k and u are both real.

Depending on the parameter values and the forcing frequency, four possible combina-
tions of waves are found by solving equation (11) for a given real value of u, as illustrated in
Figure 4: Case 1, four evanescent waves; Case 2, two evanescent waves and two neutral
waves, one of each downstream, one of each upstream; Case 3, four neutral waves; Case 4,
one ampli"ed and one decaying wave travelling downstream, two neutral waves travelling
upstream. Figure 5(a) and 5(b) show the evolution of Im (k) with u for two typical sets of
parameters. When b"0)1, v"1 [Figure 5(a)], only Cases 1 and 2 are observed. Converse-
ly, with b"0)94, v"7 [Figure 5(b)], Cases 2}4 are found. For the latter values of b and v,
the unforced pipe is convectively unstable.

For a given set of physical parameters b and v, the waves generated by forcing are clearly
dependent on the forcing frequency. Assuming that u explores all real values, we may now
analyse the wave-bearing capabilities of the medium in the (b, v) plane.

In the domain of instability, the limit between convective and absolute instability is
related to the existence of a triple root of the dispersion relation (Crighton & Oswell 1991;
Triantafyllou 1992; de Langre & Ouvrard 1999), which arises at

v
ac
"A

12b
8/9!bB

1@4
. (17)

When v(v
ac

, the instability is convective and spatially ampli"ed waves exist in a range of
frequencies.

In the domain of stability, v(v
i
, we may also di!erentiate between several subdomains

in the (b, v) plane. As shown in Figure 6, a set of four neutral waves may appear in two
distinct frequency ranges. The "rst range, further referred to as &&static range'', is bounded by
u"0 and u

1
, while the second, further referred to as &&dynamic range'' is bounded by

u
2

and u
3
. The frequencies u

1
, u

2
and u

3
are associated with wavenumbers that are

double roots of the dispersion relation. Therefore, the emergence of the static range [0, u
1
]

may be related to the existence of a double wavenumber root at u"0 for a critical value
v
s

of the reduced velocity. We then have

D(k, 0, b, v
s
)"

LD(k,u,b, v
s
)

Lk Ku/0

"0, (18)

which yields

v
s
"J2. (19)

Thus, if v'v
s

there exists a range [0, u
1
] in which all the waves are neutral. At the

emergence of the dynamic range, the two double roots at u
2

and u
3

are identical (see
Figure 6), forming a triple root of the dispersion relation. This second threshold for the
appearance of a dynamic range is therefore also given by equation (17), but extended in the



Figure 4. Schematic view of waves generated by the harmonic forcing: Case 1, evanescent waves; Case 2, neutral
and evanescent waves; Case 3, neutral waves; Case 4, neutral, evanescent and ampli"ed waves.

Figure 5. Imaginary part of the wavenumbers as functions of the real frequency: - - -, Downstream wavenum-
bers k

d1
and k

d2
; ' ' ' ' ', upstream wavenumbers k

u1
and k

u2
. (a) b"0)1, v"1, stability, evanescent and neutral

waves only; (b) b"0)94, v"7, convective instability, evanescent, neutral and ampli"ed waves.
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domain of stable parameters. Thus, if v'v
ac

there exists a dynamic range [u
2
, u

3
] in which

all the waves are neutral, provided that v(v
i
(stability).

Let us summarize the response of the in"nite pipe to localized time-harmonic forcing in
terms of the parameters b and v.

(a) When

v(J2 and v(A
12b

8/9!bB
1@4

,



Figure 6. The four roots of the dispersion relation as a function of u at b"0)15, v"1)5; (a) real part of k, (b)
imaginary part of k; d, location of a second-order root of the dispersion relation. The static and dynamic ranges

refer to the values of u at which there are four neutral waves.
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there exist evanescent waves at all forcing frequencies. This domain is further referred to as
that of &&evanescence'' (E).

(b) When

v'S
2

1!b
and v'A

12b
8/9!bB

1@4
,

the response to any forcing is dominated by the complex absolute frequency u
0

and no
wave direction may be de"ned. This is the domain of &&absolute instability'' (AI).

(c) When

v'S
2

1!b
and v(A

12b
8/9!bB

1@4
,

there exists a range of forcing frequencies that generates ampli"ed waves. This is the domain
of &&convective instability'' (CI).

(d) In the remaining domain of the (b, u) plane, there exist ranges of forcing frequency
where four neutral waves are generated, and no ampli"ed waves exist at other frequencies. If
parameters are such that neutral waves are generated by frequencies in the static range as
de"ned above (see Figure 6), the medium is said to be &&statically neutral'' (SN). In the same
manner, a &&dynamically neutral'' (DN) domain refers to the existence of the dynamic range
de"ned above.

The various domains of the (b, v) plane associated with (a)} (d) are shown in Figure 7.

4. LOCAL NEUTRALITY AS A CRITERION FOR GLOBAL INSTABILITY

We consider again a pipe of "nite length ¸. In nondimensional variables pertaining to wave
propagation, as de"ned in equation (8), the nondimensional length of the pipe is

l"¸ A
S

EIB
1@4

. (20)

In this section we increase the value of l, which is interpreted as increasing the length of the
pipe. This is strictly equivalent to increasing the elastic foundation modulus in equation (3)
(DoareH & de Langre 2000).



Figure 7. Properties of waves in an in"nite pipe: 0, local stability criterion, equation (12); - - - -, criterion for
absolute/convective instability transition in the unstable region and for the existence of four neutral waves in the
stable region, equation (17); ' - ' -, criterion for the existence of four neutral waves at u"0, equation (19). E,
evanescent; DN, dynamic neutrality; SN, static neutrality; CI, convective instability; AI, absolute instability; grey

region, local stability.
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Let us "rst analyse the behaviour of the pinned}pinned and clamped}clamped pipes. The
critical velocities of equations (4)}(6) are "rst rewritten in the local dimensionless variables
of equation (8). For the pinned}pinned pipe, they are

v
c
"

Nn
l C1#A

l

NnB
4

D
1@2

, (21)

where N is the smallest integer satisfying N2(N#1)25(l/n)4, and for the clamped}clamped
pipe

v
c
"

2n
l C1#

3

16 A
l

nB
4

D
1@2

or v
c
"

n
l C

N4#6N2#1#(l/n)4

N2#1 D
1@2

(22)

for l44(84/11)n4 or l45(84/11)n4, respectively, using N4#2N3#3N2#2N#65
(l/n)4. In Figure 8(a), the evolution of the critical velocities is plotted in the (b, v) plane as l is
varied. When l is increased to in"nity, critical velocities (21) and (22) tend to the same limit,
namely

v
=
"J2. (23)

As noted in the analysis of buckling under compressive load (Timoshenko & Gere 1961), the
critical velocity for global static instability becomes independent of the boundary condi-
tions. The above limit is exactly the lower boundary for static neutrality as sketched in
Figure 8(b). Thus, when the pipe length tends to in"nity, the global static instability arises as
soon as neutral waves exist at zero frequency (static range) which may be combined into
a static global mode of in"nite extent. Indeed, it was already noted by PamKdoussis (1998) that
for "nite-length pipes with "xed ends, all wavenumbers are real at static instability.

Following a similar approach for the cantilevered pipe, the evolutions of the critical
velocity, calculated in Section 2, are now rescaled in terms of local dimensionless variables
and plotted in the (b, v) plane as l is varied [Figure 9(a)]. The critical velocity appears to
tend to a limit that also falls into the neutral domains of Section 3 (Figure 7) but it di!ers



Figure 8. (a) Critical velocities of the pinned}pinned (- - - -) and the clamped}clamped (' ' ' ' ') pipe for increasing
pipe length; the (0) refers to the asymptotic criterion for static instability given by equation (23). (b) Schematic

view of the local properties of travelling waves; in the grey region, there exist evanescent waves at u"0.
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from the limit of the preceding static case. Up to b"2/3, this limit appears to coincide with
that of dynamic neutrality in Figure 9(b). (Above this limit, a more complex behaviour
seems to arise, and much higher values of l should be explored numerically.) Thus, when the
length of the pipe tends to in"nity, the global dynamic instability arises as soon as neutral
waves exist at nonzero frequencies (dynamic range) that may be combined into a dynamic
global mode of in"nite extent. The fact that only the dynamic range is relevant in this latter
criterion is further supported by plotting the critical #utter frequency u

c
at the critical

velocity in comparison with the boundaries u
2

and u
3

of the dynamic range (Figure 10).
Clearly, the global instability sets in the dynamic range of frequencies.

These results may now be analysed following the approach of Kulikovskii, when l tends
to in"nity. In this framework, all global eigenfrequencies u

j
of the pipe asymptotically

satisfy the equation

Im[k
d1

(u
j
)!k

u1
(u

j
)]"0, (24)

where k
d1

and k
u1

are, respectively, the downstream wavenumber with the smallest imagi-
nary part and the upstream wavenumber with the greatest imaginary part. Depending on
the imaginary part of the u

j
, conclusions regarding asymptotic global stability may be

directly drawn from equation (24). In our case, three di!erent situations arise in the (b, v)
plane. In the domain of &&evanescence'' (Figure 7), it may be proven by standard branch
analysis in the complex u-plane that no frequency with a positive imaginary part may
satisfy equation (24). Hence, stability is ensured. Conversely, in the domains of &&instability
(convective or absolute)'', equation (24) implicitly de"nes a curve in the complex u-plane,
with a positive imaginary part. Global asymptotic instability arises. Finally, in the domains
of &&neutrality'', one may not identify most ampli"ed or less evanescent wavenumbers k

d1
,

k
u1

for all real frequencies, as some range of forcing frequencies generates four neutral
waves. Although equation (24) may have some meaning in speci"c regions of the u-plane,
no general conclusions as to asymptotic global stability may be drawn. Figure 11 summar-
izes these three cases in the (b, v) plane. Clearly, our results are consistent with the approach
of Kulikovskii, as our limit stability cases (Figures 8 and 9), fall into the intermediate
domain between the domain of instability and the domain of evanescence of Figure 11. It
should be noted that Kulikovskii's approach implies that boundary conditions have
a negligible role at in"nite length. It cannot therefore di!erentiate between our two limit
curves (cantilevered and "xed ends).



Figure 9. (a) Critical velocities of the cantilevered pipe for increasing pipe lengths (thin lines); the (- - -) line refers
to the asymptotic criterion of dynamic instability, equation (23). (b) Schematic view of the local properties of

travelling waves; in the grey region, the dynamic range of neutral waves does not exist.

Figure 10. Flutter frequency versus b: 0, critical #utter frequency at l"20; shaded domain, dynamic range.

Figure 11. Asymptotic behaviour of the #uid-conveying pipe of in"nite length.

LOCAL/GLOBAL INSTABILITY OF PIPES 11
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5. DISCUSSION

In the analysis of the preceding section, the respective roles of the ends and bulk of the pipe
have been found to strongly depend on the ranges of #ow velocity v and mass ratio b. A "rst
type of behaviour has been identi"ed, which is fully consistent with the approach of
Kulikovskii: in the domains of local evanescence and local instability, when the pipe length
tends to in"nity, the asymptotic behaviour of the pipe is independent of the boundary
conditions at the pipe extremities. This may be understood by considering that evanescent
(respectively ampli"ed) waves play an increasingly relative role in the energy balance as the
pipe length is increased. Any energy input or output associated with end re#ections is
ultimately overwhelmed by the stabilizing (respectively destabilizing) e!ect in the bulk of
the pipe. The latter therefore controls global stability. Conversely, in the domain of
neutrality there may exist sets of neutral waves that convey energy upstream and down-
stream without interfering. Even with increasing length, boundary conditions e!ectively
control global stability. In this second type of behaviour, boundary conditions also play
a crucial role through the selection of ranges of frequencies. Some end conditions allow
#utter to develop [see PamKdoussis (1970) and Lee & Mote (1997)], so that energy transfer
between #ow and pipe may occur in the course of pipe motion. In our approach, for a #utter
global mode to actually develop in the domain of dynamic neutrality it is necessary that two
conditions be satis"ed: (a) the frequency be such that only neutral waves are generated and
(b) the corresponding wavenumbers be such that the boundary conditions are satis"ed.
While the latter condition selects discrete eigenfrequencies, the former requires that one of
them falls into the &&dynamic range'', as de"ned in Section 4. For in"nite pipe length the
spectrum of eigenfrequencies becomes continuous and #utter therefore arises as soon as the
#ow velocity enters the domain of local &&dynamic neutrality''. The pipe of "nite length may
yet be stable in this domain, as it may happen that none of its discrete eigenfrequencies fall
into the existing &&dynamic range'' that would allow instability to set in. This is observed in
Figure 9, where the stability curve for cantilevered "nite pipes is seen to lie above that for
the in"nite pipe. S-shaped irregularities in the stability curves of "nite-length pipes are
known to be associated with changes in modal contributions and frequency of instability
(Gregory & PamKdoussis 1966; PamKdoussis 1998). They may also be interpreted as the
consequence of discrete frequencies entering or leaving the dynamic range. The same
approach may be used when boundary conditions allow only static instability: as the length
increases, the spectrum of eigenfrequencies densi"es and the occurrence of one of them
being equal to zero increases. In Figure 8, the instability threshold is seen to decrease with
increasing pipe length. It should be noted that static neutrality may also be de"ned as
marginal local divergence instability (Carpenter & Garrad 1986).

The extension of the present approach to other hydroelastic systems modelled by
dispersion relations of the same form (Brazier-Smith & Scott 1984; Crighton 1991; Peake
1997; de Langre & Ouvrard 1999; de Langre 2000) may also be considered. It raises the
question of the existence of static or dynamic neutrality in parameter space. In our case, we
have shown that dynamic neutrality takes place when the criterion for the existence of
a third-order root, equation (17), is satis"ed in the domain of local stability. It is an
extension into the domain of stability of the criterion for transition between absolute
and convective instability (Crighton 1991). Systems such as pipes without foundation
(Kulikovskii & Shikina 1988) and plates bounded by uniform #ow (Crighton 1991) are
locally unstable at the onset of #ow. Hence, domains of static or dynamic neutrality may not
exist, and it is therefore expected that global instability for long systems arises at zero
velocity. In the case of membranes with bounded or unbounded #ow (Kelbert & Sazonov
1996; de Langre 2000) where local instability arises at "nite #ow velocity, the criterion of
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equation (17) is also found to fall into the domain of instability. Following the present
approach, one deduces that no domain of dynamic neutrality may exist. The asymptotic
criterion for global instability is probably that of local instability or that of a transition from
convective to absolute instability.

We may now draw some comparison with the results of similar approaches in the "eld of
hydrodynamic stability. The Ginzburg}Landau equation is known to be a simple yet
fruitful model of a wide class of open #ows (Huerre & Monkewitz 1990). It has been shown
that for such a model the global criterion for instability tends asymptotically to the local
criterion for absolute instability when the length of the medium is increased (Chomaz
& Couairon 1999). This conclusion, which di!ers from that of the present paper, may be
understood by taking into consideration the fact that for the Ginzburg}Landau equation
no neutral domain exists. Moreover, when convective instability arises, upstream-going
waves are strongly evanescent. Any balance involving the ampli"ed downstream-travelling
and damped upstream-travelling waves yields a total decay of the energy. The absence of a
domain of neutrality implies that boundary conditions play a relatively minor role. The strong
evanescence of upstream waves precludes global instability even in the range of local convective
instability. These results are fully consistent with those derived from Kulikovskii's approach.

The preceding comparison may be used to shed some light on the very classic problem of
destabilization by damping in "nite or in"nite systems (PamKdoussis 1970, 1998; Carpenter
& Garrad 1986). If damping terms were to be added in our model of the #uid-conveying
pipe the domain of neutrality would vanish. Depending on the value of parameters it would
be transfered into the stable or unstable domains. When the length of the pipe is increased
(or alternatively the damping coe$cient), the criterion for global stability would come
closer to the criterion for absolute instability instead of neutrality. This is being further
investigated.

6. CONCLUSION

The investigation of the behaviour of the #uid-conveying pipe on an elastic foundation has
been carried out as its length is increased. This behaviour has been interpreted in terms of
the local properties of the waves in the pipe. In that sense we have de"ned distinct local
con"gurations pertaining to the properties of the waves generated by a localized harmonic
forcing. The range of #ow velocity and mass ratio where spatially evanescent waves exist at
all real forcing frequencies is said to be that of &&evanescence''. In the domain of &&static
neutrality'', there exist only neutral waves in a range of forcing frequencies containing the
zero frequency. In the domain of &&dynamic neutrality'', there exist only neutral waves in
a range of nonzero frequencies. In the domain of &&convective instability'', there exist
ampli"ed waves at some forcing frequencies. In the domain of &&absolute instability'', no
wave direction can be found at any real frequency and the instability is dominated by the
absolute frequency; the response is ampli"ed at the source and gradually contaminates the
entire medium. We have thus found that the criterion for global instability as the length is
increased becomes closely related to the local properties of the waves in the pipe, but also
depends on the boundary conditions. For sets of boundary conditions that allow only static
instability, such as pinned}pinned or clamped}clamped ends, we have determined that the
asymptotic criterion for global instability is that of static neutrality. Conversely for the
cantilevered pipe, which is known to be destabilized by #utter, the asymptotic criterion for
global instability is that of dynamic neutrality.

By di!erentiating the particular e!ects of the boundary conditions, we have given here
a set of results that may not be derived from more classical criteria such as that of
Kulikovskii.
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